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The one-dimensional packing problem may be stated as follows: When objects of 
length L are randomly placed on a line of length N until no more placement is possible, 
how much space remains unoccupied? In a previous paper, the authors showed that, for 
L = 2, the fraction of unoccupied space is dependent on the model governing the placement 
mechanism. In this paper, these results are extended from the discrete to the continuous 
case by allowing both N and L to increase, while keeping their ratio constant. The 
methodology was validated by reproducing the analytical results for limiting cases. 

1. Introduction 

In 1958, the Hungarian mathematician A. Renyi published a seminal 
paper [1] which addressed the following problem: If non-overlapping objects o f  
length L are placed at random along a line of  length N, what is the expected value 
of  the wasted space at saturation, i.e. what portion of  the line remains uncovered 
when no spaces equal to or greater than L are available. Solomon and Weiner [2] 
have reviewed the literature inspired by this problem and have attributed its origin 
to a model  first proposed by the British physical chemist J.D. Bernal for liquids 
composed of  spherically symmetrical molecules. In that model, a specified volume 
is randomly filled with impenetrable spheres of  uniform diameter until no space 
large enough to accommodate a single sphere remains. The inefficiencies of  packing 
due to the random placement of  the spheres results in a certain amount of  "wasted" 
space which, in the absence of  attractive or repulsive forces between spheres, 
corresponds to the increase in volume accompanying the melting of  a perfect crystal 
in which packing efficiency is presumed to be a maximum. Renyi ' s  problem is a 
one-dimensional version of  the one posed by Bemal.  

© J.C. Baltzer AG, Science Publishers 



168 R.W. Freedman, F. Gornick, One-dimensional packing problem 

It is of interest to note that, almost twenty years before the publication of 
Renyi's work, the American chemists Flory [3] and Wall [4,5] considered a model 
(the FW model) of a chemical reaction in which adjacent substituents along the 
backbone of a linear polymer molecule are removed in pairs. A given substituent 
is thus permanently isolated if both of its nearest neighbors have been paired 
previously. This is clearly a discrete version of the packing problem; the objects 
are of length two and their end points are confined to integral coordinates. Related 
problems were treated by Gomick and Jackson [6], and McQuarrie [7]. The former 
paper considered the crystallization of randomly selected segments of polymer 
chains. In this case, a sequence is selected only if its length exceeds some critical 
value. Sequences of sub-critical length bounded by previously selected sequences 
are thus excluded from the crystal phase and are thus isolated. McQuarrie [7] 
treated a one-dimensional nucleation and growth problem in which sequential reactions 
of substituents along a polymer chain are initiated at random, followed by near- 
neighbor propagation. He then derived a distribution function for lengths of sequences 
of unreacted substituents as a function of the extent of the reaction. Extensive 
reviews [8-10] related to sequential reactions along the backbone of polymer chains 
are available in the chemical literature. For further references to packing problems 
encountered in the physical sciences and engineering, the reader is referred to an 
interesting paper by Mackenzie [11]. 

In a previous paper [12], we re-examined the FW model (L = 2) and showed 
that the expected value of the packing efficiency depends on the mechanism goveming 
the pair selection process. By "mechanism" we refer to the specification of individual 
steps in a process. The FW model corresponds to a one-step mechanism insofar as 
a pair of unoccupied points on the line is selected at random and the object placed 
upon them in a single concerted step. In our model, two distinct steps are required: 
(1) an unoccupied point is chosen, and (2) the object is placed either to the right 
or to the left of it, if at least one of those placements is possible. The fraction of 
unoccupied points in the two-step process is shown to be approximately 10% lower 
than that of the one-step process. #1 Since the publication of our paper, we have 
become aware of the work of Evans and Nord [13], who have treated an identical 
problem by other methods. In the present paper, we generalize our previous results 
[ 12] by extrapolating from the discrete to the continuous case. This is accomplished 
by allowing both the length of the object L and the length of the line N to increase 
without bound while keeping their ratio fixed. 

A forthcoming review paper by Evans [14] will encompass all of  the 
aforementioned topics, as well as others dealing with random and cooperative sequential 
adsorption. 

#1It has been brought to our attention that Our results, as well as those of FW, were reported by Page [15] 
and Downton [16] in 1959 and 1961, respectively. These authors were no doubt unaware of the work 
of Flory and Wall, which appeared in the chemical literature twenty years earlier. Our failure to 
acknowledge these contributions, although inadvertent, is regrettable. 
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2. Comparison of the one- and two-step models 

In the interest of  clarity, we reiterate the essential features of  both the one- 
and two-step models  and generalize our previous results (i.e. L = 2) for any integral 
values of  L and N. In both models,  objects are placed so that their end points are 
at integral coordinates. Thus, for a line of  length N which is marked off  in coordinates 
from 1 on the left to N + 1 on the right, and an object of  length k, we define the 
ith location as the one in which the line segment  lies between coordinates i and 
i + k, denoted as [i, i + k]. As an illustration, the third location for an object of  
length 2 on a line of length 4 would be pictured as the patterned segment in fig. l(a). 
A more  compact,  but equivalent, diagram is shown in fig. l(b). 

1 2 3 4 5 

I I I!iiii!iiiii!ilili~ii~!iii!i!iiiiii~i!ii!..q 
(a) 

[ - - * * ]  

(b) 

Fig. 1 (a) (ilii~) T h e  third loca t ion  of  an  ob jec t  o f  l eng th  k = 2 on  
a l ine  of  l eng th  N = 4. (b)  Same  as (a), whe re  ( - ) is an unoccup ied  
un i t  l ine  s egm en t  and ( * * ) is the th i rd  loca t ion  of  l eng th  k = 2. 

We define S(L, N) as the expected value of  the amount  of  unoccupied space 
on a line of  length N when objects of  length L are placed upon it to the point of  
saturation. The reader can readily verify that for (N = 1, 2 . . . . .  L - 1 )  (i.e. the 
length of  the object exceeds the length of  the line), S(L, N) = N. Furthermore,  for 
(N = L . . . . .  2L - 1) (i.e. only one object will fit on the line), S(L, N) = N - L. 

There are ( N -  L + 1) possible locations for the placement  of the first object. 
Each placement  will correspond to a different initial configuration. Let S(L, i, N) 
be the expected value of  the amount  of  wasted space, given that the first object 
placed occupies [i, i + L]. Then, ifp(L,  i, N) is the probability of that initial placement, 
it follows that: 

N - L + I  

S(L, N) = ~ .  p(L, i, N) S(L, i, N) .  
i=1 

Cons ide r  the one-s tep  model .  Here,  p ( L , i , N ) =  1 ~ ( N - L +  1) for  
i = 1 . . . . .  ( N - L  + 1) because all configurations are equally probable. The four 
possible configurations for the case of  L = 3, N = 6 are shown in fig. 2, where three 
contiguous asterisks ( . . . )  represent the location of  the object and each dash ( - )  
represents an unoccupied unit line segment.  
,1 
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(A) [ * * * - - - ]  (B) [ - * * * - - ]  

(C) [ - - * * * - ]  (D) [ - - - * * * ]  

Fig. 2. Possible configurations after placement 
of the first object (for L = 3 and N = 6). 

From fig. 2, it is clear that in configurations A and D (i = 1 and 4), S(3, i, 6) = 0 
since, in both cases, there remains a space exactly equal to the length of  one object 
and consequently there is no wasted space at saturation. However,  in configurations 
B and C (i = 2 and 3), the two remaining spaces are each too small to accommodate  
another object. Therefore, further occupancy is precluded and three spaces are 
wasted. As noted above, all four configurations have equal probability (p(3 ,  i, 6) 
= 1/4 for i = 1 . . . . .  4), and thus 

S(3, 6) = (1/4) (0) + (1/4) (3) + (1/4) (3) + (1/4) (0) = 1.5 (one-step model).  

Now consider the case of  the one-step model  when L = 3 and N = 9. Here, 
seven equally probable configurations, diagrammed in table 1, result from the placement 
of  the first object. Following the procedure used for N = 6, we compute  S(3, 9), i.e. 
the product  of  the probability of  a configuration and the expected value of  the 
amount  of  wasted space given that particular configuration,  summed  over  all 
configurations.  

The resulting value of  S(3, 9) is (1/7) (1.5 + 3 + 3 + 0 + 3 + 3 + 1.5) = 2.1429. 
The fractional wasted space S(L, N)/N is thus 0.2381. 

In the first step of the two-step model,  an arbitrary loca t ion j  ( j  = 1 . . . . .  N), 
on the line is chosen with uniform probability. In step 2, the object is placed either 
to the fight or to the left of  locat ionj ,  depending on whether there is space available. 
If  the line segment  [ j  - L + 1, j + L - 1] is unoccupied,  the conditional probabilities 
of  placing the object either on the line segment  [ j -  L -  1 , j ]  or on [ j , j  + L -  1] are 
each equal to 1/2. If, however,  any of  the line segment [ j -  L -  1, j ]  is occupied,  
then placement  in that range is impossible. Clearly, a similar statement applies to 
the line segment  [j ,  j + L -  1]. 

To i l luminate the contrast between the one- and two-step models ,  let us 
calculate S(3, 6) and S(3, 9) for the latter. The possible configurations resulting 
from the placement  of  the initial object of  length L = 3 are as shown in fig. 2 (for 
N = 6) and table 1 (for N = 9). The values of  S(3, N) for the two-step model  must  
be the same as those for the one-step model  for line lengths less than or equal to 
( 2 L -  1). Hence, S(3, N) = 1, 2, 0, 1, and 2 for N = 1, 2, 3, 4, and 5, respectively. 

Fol lowing the rules for t he  two-step model  for L = 3 and N = 6, let us now 
calculate the probability of  configuration A (see fig. 2), in which locations 1, 2, and 
3 are occupied. There are two ways to achieve this configuration: either location 1 
is initially chosen and the object placed to the right (with condit ional  probability 
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of  unity), or location 3 is initially chosen and the object placed to the left (with 
conditional probability of 1/2). Since the a priori probability of choosing any particular 
initial location is 1/6, the probability Pr(A) of configuration A is 

Pr(A) = (1/6) (1) + (1/6) (1/2) = 0.25 (two-step model), 

which is coincidentally equal to Pr(A) for the one-step model. Similar arguments 
show that the probabilities of the four possible configurations are equal, so that the 
value of S(3, 6) for the two-step model is calculated as 

S(3, 6) = (1/4) (0) + (1/4) (3) + (1/4) (3) + (1/4) (0) = 1.5 (two-step model). 

It should be noted that although this is the same result as that obtained for 
the corresponding one-step model, this is not true in general as illustrated in the 
case of L = 3 and N = 9. Following the procedure outlined above, the seven possible 
configurations that result from the placement of  the initial object of  length 3 in a 
sequence of length 9 are shown in table 1. Whereas in the case of the one-step 
model the probabilities of each configuration were equal, that is not the case in the 
two-step model, as shown in table 1. 

Table 1 

Possible configurations and probabilities for the two-step model (L = 3, N = 9). 

i Configuration p(3, i, 9) S(3, i, 9) 
two-step two-step 

1 [ * * ,  ] (1/9) (1 + 1/2) S(3, 6) = 1.5 

2 [ - * * *  . . . . .  ] (1 /9 ) (1+1 /2 )  S(3, 1) +S(3, 5) = 3 

3 [ - - * * *  . . . .  ] (1 /9 ) (1 /2+1/2)  S(3, 2) +S(3,  4) = 3  

4 [ - - -  *** - - - ]  (1/9) (1/2 + 1/2) S(3, 3) + S(3, 3) = 0 

5 [ . . . .  * * * - - ]  (1 /9 ) (1 /2+1 /2 )  S(3, 4) +S(3,  2) = 3  

6 [ . . . . .  * * * - ]  (1 /9 ) (1 /2+1)  S(3, 5) +S(3,  1) = 3 

7 [ ** .1  (1/9) (1/2 + 1) S(3, 6) = 1.5 

Multiplying the above probabilities with the corresponding values of wasted 
space and summing the results, it is found that the value of  S(3, 9) is (1/9) (39/2) 
= 2.1667. The fractional wasted space is, by definition, S(L, N)/N which, for this 
case, is 0.2407. 

3. Results and discussion 

The calculation of  S(L, N) for arbitrary integer values of  L and N does not 
lend itself to a closed form solution for either the one-step or the two-step models. 
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Consequently, we have developed the following algorithms for calculating these 
quantities (the derivations are presented in the appendix): 

S(L, N) = [1/ (N-  L + 1)] [(N - L)S(L, N - 1) 

+ (2)S(L, N - L)] (one-step), (1) 

S(L, N) = (1 /N)[ (N-  1)S(L, N -  1) 

+ (3)S(L, N - L) - S(L, N - 2L + 1)] (two-step). (2) 

Due to the recursive nature of these algorithms, evaluation of  S(L, N) for 
large values of  L and N is very tedious (e.g. more than 100 h of  CPU time on a 
VAX 8600 were required to calculate S(1000, 10"*(6)) for the two-step model). 
Therefore, the results of  these calculations are summarized in tables 2 and 3. These 
tables show the expected value of isolated space normalized by line length N for 
given values of object length L under the protocols of the one-step method (table 2) 
and the two-step method (table 3). These data, then, are the expected values of  the 
fraction of isolated space S(L, N)/N. 

In our previous paper [12], we considered the one-step and two-step methods 
for the discrete case, that is, where L = 2 and objects are placed only at integral 
coordinates. Flory [3] and Wall [4, 5] determined analytically that for the one-step 
model the value of S(L, N)/N equals exp(-2)  (= 0.13534) in the limit of  large N (for 
L = 2). Page [15] obtained an analytical result for the same quantity for the two- 
step model. His result is 0.12332. These results are in agreement with the values 
shown in tables 2 and 3 (L = 2, N/L = 1000). 

Now consider the generalization to the continuous case where the placement 
of  the object is not confined to integral coordinates, and the object and line each 
may be of  any length. The continuous case can be simulated from the discrete 
algorithm by increasing the length of the object, while keeping the ratio of the line 
length to object length N/L constant. Normalizing the results by the length of the 
line, we obtain the value of S(L, N)/N in the limit of  large N (see tables 2 and 3). 

The results of our simulation of  the continuous case are consistent with 
several results obtained analytically. For example, consider the placement of objects 
of length L upon a continuous line of length 2L. It is clear that for both the one- 
and two-step models, the fraction of the unoccupied space on the line upon saturation 
will be vanishingly close to one half. Similarly, the fraction of  isolated space for 
the continuous case where the ratio of line length to object length equals 3 must 
approach one third. These results are consistent with those shown in tables 2 and 3 
(N/L = 2, 3; L = 1000). Moreover, Renyi 's [1] result for an infinite line (i.e. ratio 
of line length to object length approaches infinity) for the one-step model (=0.252) 
is closely approximated by our results of 0.2524, shown in table 2, N/L = 1000, 
L = 1000 (i.e. N = 1000000). We consider these results an indication of the validity 
of  our method. 
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Table 2 

One-step model results: expected value of the fraction of isolated 
space S(L, N)/N for an object of length L and a line of length N. 

Object length L 
Size ratio 

NIL 2 5 10 50 100 1000 

2 0.1667 0.3333 0.4091 0.4804 0.4901 0.4990 

3 0.1778 0.2828 0.3117 0.3298 0.3316 0.3332 

4 0.1690 0.2595 0.2873 0.3090 0.3117 0.3141 
5 0.1624 0.2492 0.2765 0.2978 0.3004 0.3027 

10 0.1489 0.2285 0.2535 0.2729 0.2753 0.2774 
30 0.1398 0.2146 0.2381 0.2563 0.2586 0.2606 
50 0.1380 0.2119 0.2350 0.2530 0.2552 0.2572 

100 0.1367 0.2098 0.2327 0.2505 0.2527 0.2547 
500 0.1356 0.2081 0.2309 0.2486 0.2507 0.2527 

1000 0.1355 0.2079 0.2307 0.2483 0.2505 0.2524 

Table 3 

Two-step model results: expected value of the fraction of isolated 
space S(L, N)/N for an object of length L and a line of length N. 

Object length L 
Size ratio 

NIL 2 5 10 50 100 1000 

2 0.1250 0.3500 0.4250 0.4850 0.4925 0.4992 
3 0.1528 0.2911 0.3172 0.3309 0.3322 0.3332 

4 0.1523 0.2614 0.2948 0.3236 0.3273 0.3308 
5 0.1478 0.2526 0.2866 0.3126 0.3157 0.3184 

10 0.1357 0.2318 0.2622 0.2858 0.2887 0.2912 
30 0.1274 0.2177 0.2463 0.2685 0.2712 0.2736 

50 0.1258 0.2149 0.2432 0.2650 0.2677 0.2701 

100 0.1246 0.2128 0.2408 0.2624 0.2651 0.2674 

500 0.1236 0.2111 0.2389 0.2603 0.2630 0.2653 
1000 0.1234 0.2109 0.2386 0.2600 0.2625 0.2648 

Considering next the fraction of isolated space on a line of infinite length 
following the two-step model, our result is 0.2648 (table 3, N/L = 1000, L = 1000). 
Based on the close agreement with known results for the one-step model, we 
conclude that the results for the two-step model are accurate. We observe that the 
two-step model for the continuous case yields expected values of the fraction of 
unoccupied space approximately five percent higher than the one-step model. As 
we have noted in our previous paper [12], the difference between the two mechanisms 
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comes into play as the average distance between placed objects decreases. Moreover, 
this average distance decreases continuously as objects are placed on the line. For 
example, it is easily shown that even for a pre-saturation occupancy level of  20%, 
the average distance between placed objects is approximately four times the length 
of  the object (=4L); at the 50% level, the average distance between placed objects 
decreases to a single object length. Thus, the effect of the choice of  mechanism 
rapidly becomes appreciable. 

Appendix 

Recall that S(L, N) is the expected value of the amount of  isolated space 
remaining upon saturation for objects of length L and a line of length N. Let 
p(L, i, N) be the probability that the first object to be placed on the line occupies 
[i, i + L]. 

TWO-STEP MODEL 

It follows from the assumptions of the two-step model that 

p(L, i, N )  = [3 / (2N)]  

= ( l / N )  

= [3 / (2N)]  

for i =  1 . . . . .  L - I ;  

for i = L . . . . .  N -  (2L) + 2; 

for i = N -  (2L) + 3 . . . . .  N - L +  1. (A.1) 

We observe that the selection of the location for the initial object [i, i + L] 
splits the line into two line segments of lengths (i - 1) and ( N -  i - L  + 1). The total 
amount of isolated space on the line will be the sum of the isolated space in each 
of the two line segments. Let S(L, i, N) be the expected value of  the amount of  
isolated space remaining upon saturation for objects of length L and a line of  length 
N, given that only one object has been placed, in the location [i, i + L]. Then, 

S(L, i, N) = S(L, i - 1) + S(L, N -  i - L + 1). (A.2) 

Since any of the ( N -  L + 1) possible locations could have been initially selected, 

N-L+I  

S(L, N) = ~ p(L,i ,  N) [S(L,i, N)]. (A.31 
i=1 

Combining eqs. (A.2) and (A.3), and noting that p(L, i, N) =p(L,  N -  L -  i + 2), it 
follows that 

N-L+I  

S(L, N) = (2) ~ p(L, i, N) [S(L,i - 1)]. (A.4) 
i=l 

Substitution from eq. (A.1) into (A.4) yields 



R.W. Freedman, F. Gornick, One-dimensional packing problem 175 

(N/2) [S(L, N)] = (3/2) [S(L, 0) + S(L,  1) + . . .  + S(L,  L - 2)] 

+ [ S ( L , L - 1 )  + . . . + S ( L , N -  2 L  + I)] 

+ (3/2) [S(L, N - 2L  + 2) + . . .  + S(L,  N - L)]. (A.5) 

Equation (A.5) may be rewritten as 

L-2 N - L  

(N)  [S(L, N)I = ~ S ( L , i )  + ~ S (L , i )  + (2) ~ S (L , i )  . (A.6) 
i=0 i=N-2L+2 i=0 J 

Subtracting ( N -  1)S(L, N -  1) from the above and rearranging, we obtain 

S(L,  N)  = ( 1 / N ) [ ( N -  1)S(L, N -  1) 

+ (3)S(L, N -  L)  - S(L,  N -  2L + 1)] (two-step). (A.7) 

Equation (A.7) is a general recursive relationship for S(L,  N).  Since it is obvious 
that 

S ( L , i ) =  i f o r i = 0 , 1  . . . . .  L - l ;  

= i -  L for i = L, L + l . . . . .  2 L - 1 ,  (A.8) 

we can insert N = 6 and L = 3 into (A.7) and obtain S(3, 6) = 1.5, which we have 
previously shown to be the case. 

ONE-STEP MODEL 

We observe that the difference between the one-step model and the two-step 
model resides entirely in the difference in the two expressions for p(L ,  i, N).  The  
one-step model equation which corresponds to eq. (A.1) is 

p(L ,  i, N) = [1/(N- L + 1)] for i = 1 . . . . .  N -  L + 1 (one-step). (A.I ' )  

Replacing the expression for p(L ,  i, N)  in the two-step model (eq. (A.1)) with the 
one-step model expression (eq. (A.I ' ))  and thereafter following the same line of 
reasoning, we obtain the following recursion relationship for S(L,  N): 

S(L,  N) = [1/(N - L + 1)] [(N - L)S(L ,  N - 1) 

+ (2)S(L, N -  L)] (one-step). (A.7') 

For obvious reasons, the relationships expressed in eq. (A.8) apply to both the one- 
step and the two-step models. 

Equations (A.7) and (A.7') are the final recursion relations for the two-step 
and one-step models, corresponding to eqs. (2) and (1), respectively. A comparison 
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Table 4 

The expected number of unoccupied sites after saturation: 
comparison between the one-step and two-step methods (L = 3). 

S(3, N) (one-step) S(3, N) (two-step) 
N (eq. (A.7')) (eq. (A.7)) 

1 1.000 1.000 
2 2.000 2.000 
3 0.000 0.000 
4 1.000 1.000 
5 2.000 2.000 
6 1.500 1.500 
7 1.600 1.429 
8 2.000 2.000 
9 2.143 2.167 

10 2.275 2.179 

of  the values of  S(L, N) for these two models for L = 3 and for values of  N between 
1 and 10 is shown in table 4. Note that the values of  S(3, 6) and S(3, 9) for both 
models agree with the values previously determined. 
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